Conservation of Intramembrane Proteolytic Activity and Substrate Specificity in Prokaryotic and Eukaryotic Rhomboids

نویسندگان

  • Sinisa Urban
  • Daniel Schlieper
  • Matthew Freeman
چکیده

Rhomboid is an intramembrane serine protease responsible for the proteolytic activation of Drosophila epidermal growth factor receptor (EGFR) ligands. Although nothing is known about the function of the approximately 100 currently known rhomboid genes conserved throughout evolution, a recent analysis suggests that a Rhomboid from the pathogenic bacterium Providencia stuartii is involved in the production of a quorum-sensing factor. This suggests that an intercellular signaling mechanism may have been conserved between prokaryotes and metazoans. However, the function of prokaryotic Rhomboids is unknown. We have examined the ability of eight prokaryotic Rhomboids to cleave the three Drosophila EGFR ligands. Despite their striking sequence divergence, Rhomboids from one Gram-positive and four Gram-negative species, including Providencia, specifically cleaved Drosophila substrates, but not similar proteins such as Transforming Growth Factor alpha (TGFalpha) and Delta. Although the sequence similarity between these divergent Rhomboids is very limited, all contain the putative serine catalytic triad residues, and their specific mutation abolished protease activity. Therefore, despite low overall homology, the Rhomboids are a family of ancient, functionally conserved intramembrane serine proteases, some of which also have conserved substrate specificity. Moreover, a function for Rhomboids in activating intercellular signaling appears to have evolved early.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Allosteric regulation of rhomboid intramembrane proteolysis.

Proteolysis within the lipid bilayer is poorly understood, in particular the regulation of substrate cleavage. Rhomboids are a family of ubiquitous intramembrane serine proteases that harbour a buried active site and are known to cleave transmembrane substrates with broad specificity. In vitro gel and Förster resonance energy transfer (FRET)-based kinetic assays were developed to analyse cleava...

متن کامل

Diverse Substrate Recognition Mechanisms for Rhomboids: Thrombomodulin Is Cleaved by Mammalian Rhomboids

The rhomboids are a recently discovered family of intramembrane proteases that are conserved across evolution. Drosophila was the first organism in which they were characterized, where at least Rhomboids 1-3 activate EGF receptor signaling by releasing the active forms of EGF-like growth factors. Subsequent work has begun to shed light on the role of these proteases in bacteria and yeast, but n...

متن کامل

Mechanism of intramembrane proteolysis investigated with purified rhomboid proteases.

Intramembrane proteases have the unusual property of cleaving peptide bonds within the lipid bilayer, an environment not obviously suited to a water-requiring hydrolysis reaction. These enzymes include site-2 protease, gamma-secretase/presenilin, signal peptide peptidase and the rhomboids, and they have a wide range of cellular functions. All have multiple transmembrane domains and, because of ...

متن کامل

A New Class of Rhomboid Protease Inhibitors Discovered by Activity-Based Fluorescence Polarization

Rhomboids are intramembrane serine proteases that play diverse biological roles, including some that are of potential therapeutical relevance. Up to date, rhomboid inhibitor assays are based on protein substrate cleavage. Although rhomboids have an overlapping substrate specificity, substrates cannot be used universally. To overcome the need for substrates, we developed a screening assay using ...

متن کامل

Reconstitution of intramembrane proteolysis in vitro reveals that pure rhomboid is sufficient for catalysis and specificity.

Intramembrane proteolysis is a new paradigm in biology that controls signaling events throughout evolution. Hydrolysis of peptide bonds is thought to occur within the normally hydrophobic membrane environment, but insights into this unusual activity have been lacking because of difficulty in recapitulating activity in vitro. We have reconstituted intramembrane proteolysis with a pure recombinan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current Biology

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2002